

Adaptive Preconditioning Guided by Divergence Analysis for Enhanced VLSI Global Placement

Liwen Jiang, Ruiyu Lyu, Fan Yang, and Keren Zhu^{*}

State Key Laboratory of Integrated Chips and Systems College of Integrated Circuits and Micro-Nano Electronics Fudan University, Shanghai, China

05/11/2025

► Motivation

▶ Proposed Algorithm

- Divergence Analysis for Preconditioning
- Net Weighting Scheme

▶ Experimental Results & Conclusion

Conventional Global Placement 1 Motivation

• Relaxed Objective Function:

ነናጋላ

 $\min_{\mathbf{v}} \quad f(\mathbf{v}) = W(\mathbf{v}) + \lambda D(\mathbf{v})$

• Density Penalty Multiplier λ :

 $\lambda \leftarrow \lambda \times cof,$

ePlace-MS fixes $cof \in [0.95, 1.05]^a$.

Figure: Evolution of HPWL and λ over global placement iterations in superblue19 benchmark.

^aJingwei Lu et al. "ePlace-MS: Electrostatics-Based Placement for Mixed-Size Circuits". In: *IEEE Transactions* on Computer-Aided Design of Integrated Circuits and Systems 34.5 (2015), pp. 685–698.

Figure: Final global placement result in superblue19 benchmark.

Placers are limited by their "global" nature.¹

► Motivation

\blacktriangleright Proposed Algorithm

- Divergence Analysis for Preconditioning
- Net Weighting Scheme

▶ Experimental Results & Conclusion

- Divergence-guided cell cluster detector — using the spectral methods;
- Diffusion-based smooth density function — locally adaptive adjustment of clusters.
- Dynamic net weighting scheme
 - incorporating the wirelength and density information of every cluster into Backpropagation;

Physical Perspective

Initial placement diffuses from a **SOURCE** point. Close-knit nets form **SINK** progressively.

7/15

8/15

EDA Divergence Analysis for Preconditioning (Cont'd)

• Cell Cluster Detector

Poisson' s Equation in ePlace:

Electric Field Function:

$$\begin{cases} \xi_{X_{DCT}} = \sum_{\substack{u=0\\m-1}}^{m-1} \sum_{\substack{v=0\\m-1}}^{m-1} \frac{a_{u,v}\omega_u}{\omega_u^2 + \omega_v^2} \sin(\omega_u x) \cos(\omega_v y) \\ \xi_{Y_{DCT}} = \sum_{\substack{u=0\\m-1}}^{m-1} \sum_{\substack{v=0\\\omega_u^2 + \omega_v^2}} \frac{a_{u,v}\omega_v}{\omega_u^2 + \omega_v^2} \cos(\omega_u x) \sin(\omega_v y). \end{cases}$$
May 9-12, 2025 **A** Hong Kong Disneyland, China

Divergence Function:

$$\nabla \cdot \xi = \frac{\partial \xi_x}{\partial x} + \frac{\partial \xi_y}{\partial y},$$

$$\begin{cases} \frac{\partial \xi_x}{\partial x} = \sum_{\substack{u=0\\m-1}}^{m-1} \sum_{\substack{v=0\\m-1}}^{m-1} \frac{a_{u,v}\omega_u^2}{\omega_u^2 + \omega_v^2} \sin(\omega_u x) \cos(\omega_v y) \\ \frac{\partial \xi_y}{\partial y} = \sum_{u=0}^{m-1} \sum_{v=0}^{m-1} \frac{a_{u,v}\omega_v^2}{\omega_u^2 + \omega_v^2} \cos(\omega_u x) \sin(\omega_v y). \end{cases}$$

EDA Divergence Analysis for Preconditioning (Cont'd) **ISEDA28** 2 Proposed Algorithm

 \Rightarrow

• Cell Cluster Detector

Poisson' s Equation in ePlace:

Electric Field Function:

$$\begin{cases} \xi_{X_{DCT}} = \sum_{\substack{u=0\\m-1}}^{m-1} \sum_{\substack{v=0\\m-1}}^{m-1} \frac{a_{u,v}\omega_u}{\omega_u^2 + \omega_v^2} \sin(\omega_u x) \cos(\omega_v y) \\ \xi_{Y_{DCT}} = \sum_{\substack{u=0\\u=0}}^{m-1} \sum_{\substack{v=0\\\omega_u^2 + \omega_v^2}}^{m-1} \frac{a_{u,v}\omega_v}{\omega_u^2 + \omega_v^2} \cos(\omega_u x) \sin(\omega_v y). \end{cases}$$
May 9-12, 2025 **\$** Hong Kong Disneyland, China

Divergence Function:

$$\nabla \cdot \xi = \frac{\partial \xi_x}{\partial x} + \frac{\partial \xi_y}{\partial y},$$

$$\begin{cases} \frac{\partial \xi_x}{\partial x} = \sum_{u=0}^{m-1} \sum_{v=0}^{m-1} \frac{a_{u,v}\omega_u^2}{\omega_u^2 + \omega_v^2} \sin(\omega_u x) \cos(\omega_v y) \\ \frac{\partial \xi_y}{\partial y} = \sum_{u=0}^{m-1} \sum_{v=0}^{m-1} \frac{a_{u,v}\omega_v^2}{\omega_u^2 + \omega_v^2} \cos(\omega_u x) \sin(\omega_v y). \end{cases}$$

Diffusion-based Smooth Density Function

$$\hat{
ho}(x,y) =
ho(x,y) + div$$
 \Downarrow
 $\hat{
ho}(x,y) =
ho(x,y) + K imes (
abla \cdot \xi),$

where K is the diffusion coefficient, its value depends on the degree of cluster in a design.

Diffusion-based Smooth Density Function

$$\begin{split} \hat{\rho}(x,y) &= \rho(x,y) + div \\ & \Downarrow \\ \hat{\rho}(x,y) &= \rho(x,y) + K \times (\nabla \cdot \xi), \end{split}$$

where K is the diffusion coefficient, its value depends on the degree of cluster in a design.

normal cells & cluster cells

- Ensure fair force contribution.
- Normalize gradient.

Algorithm Update Net Weights **Require:** cluster net set: CNets, cluster node set: CNodes 1: $\mathbf{N} \leftarrow AllNodes - CNodes$: \triangleright Get normal node set 2: $\mathbf{N}_s \leftarrow \texttt{compute_scale} \ (\frac{\sum \nabla W}{\sum \nabla D});$ 3: for each *cluster* in *CNets* do $\mathbf{C} \leftarrow CNodes[cluster]:$ 5: $\mathbf{C}_s \leftarrow \texttt{compute_scale} \ (\frac{\sum\limits_{\mathbf{C}} \nabla W}{\sum \nabla D});$ 6: $s \leftarrow \mathbf{C}_{\circ} / \mathbf{N}_{\circ}$: ▷ Compute scaling factor \triangleright Update the net weights $w_{cluster} \leftarrow w_{cluster} \times s;$ 8: end for

► Motivation

► Proposed Algorithm

- Divergence Analysis for Preconditioning
- Net Weighting Scheme

▶ Experimental Results & Conclusion

Cluster Detection and Smooth 3 Experimental Results & Conclusion

(a) iteration=500

(b) iteration=515

Figure: Detected clusters during our global placement for the superblue19 benchmark. Standard cells, macros and clusters are denoted by blue, pink and green, respectively.

Edg

Comparison on the DAC-2012 Benchmarks Suite

3 Experimental Results & Conclusion

Circuits	# Movable	# Nets	DREAMPlace-1 *		DREAMPlace-2 *		Ours	
	Cells		HPWL	iteration	HPWL	iteration	HPWL	iteration
SUPERBLUE2	921273	990899	5.669E + 08	694	5.667E + 08	811	5.667E + 08	802
SUPERBLUE3	833370	898001	2.880E + 08	710	2.874E + 08	825	2.865E + 08	825
SUPERBLUE6	919093	1006629	3.036E + 08	720	3.036E + 08	743	3.035E + 08	755
SUPERBLUE7	1271887	1340418	3.634E + 08	757	3.637E + 08	774	3.634E+08	763
SUPERBLUE9	789064	833808	2.086E + 08	744	2.098E + 08	889	2.069E + 08	869
SUPERBLUE11	859771	935731	3.211E + 08	710	3.193E + 08	827	3.197E + 08	843
SUPERBLUE12	1278084	1293436	2.235E + 08	953	2.259E + 08	1093	2.218E + 08	1066
SUPERBLUE14	567840	619815	2.105E + 08	646	2.101E + 08	702	2.091E + 08	704
SUPERBLUE16	680450	697458	2.416E + 08	685	2.411E + 08	798	2.403E + 08	784
SUPERBLUE19	506097	511685	1.363E + 08	605	1.360E + 08	703	1.348E + 08	723
ratio			1.005	0.889	1.005	1.003	1.000	1.000

DREAMPlace-1: released DREAMPlace²

DREAMPlace-2: smaller-step-size DREAMPlace with similar iteration to ours

²Yibo Lin et al. "DREAMPlace: Deep Learning Toolkit-Enabled GPU Acceleration for Modern VLSI Placement". In: May 9-17:2025 & Hung Kong Disneyland, Chipater-Aided Design of Integrated Circuits and Systems 40.4 (2021), pp. 748-761.

- We propose a adaptive preconditioning algorithm for global placement guided by divergence analysis.
- Experimental results on the DAC-2012 benchmarks suite show that our adaptive preconditioning algorithm can make the best tradeoff between HPWL and iteration.
- This work provides new ideas and methodological support for solving placement challenges in complex integrated circuit design.

THANK YOU!

May 9-12, 2025 索 Hong Kong Disneyland, China