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Abstract—Global placement is a critical step in modern VLSI
physical design. Traditional electrostatic-based analytical place-
ment algorithms, such as ePlace, employ a two-layer optimization
loop: an inner loop using Nesterov’s gradient descent, and an
outer loop updating the density penalty multiplier to progres-
sively enhance the density penalty. However, these conventional
update methods often fail to balance the optimization efforts
across different nets, leading to suboptimal solutions. In this
paper, we introduce an adaptive preconditioning algorithm that
addresses these limitations. Our approach utilizes divergence
analysis to identify clusters within the placement region, fol-
lowed by net preconditioning to adjust the optimization efforts
accordingly. This ensures a more balanced distribution of opti-
mization efforts across all nets, leading to improved placement
quality. Experimental results on the DAC-2012 benchmarks
suite demonstrate that our algorithm achieves a reduction in
final placement wirelength compared to DREAMPlace, while
obtaining an optimal tradeoff between half-perimeter wirelength
(HPWL) and iteration count.

Index Terms—global placement, divergence analysis, net
weighting.

I. INTRODUCTION

Conventional global placement methodologies in VLSI
physical design primarily optimize wirelength minimization
while incorporating density constraints to mitigate instance
overlap. The emergence of electrostatic-based placers in the
ePlace series [1–4] has revolutionized placement techniques
by establishing a novel paradigm for simultaneous wirelength
optimization and uniform spatial distribution of heterogeneous
circuit components, including standard cells, macros, and other
movable instances. These advanced implementations employ
fast Fourier transform (FFT)-accelerated numerical solvers
for real-time density potential evaluation, achieving superior
solution quality and computational efficiency through three
key innovations: (1) continuous differentiable system formu-
lation enabling gradient-based optimization, (2) electrostatic
charge analogy ensuring smooth density gradient propagation,
and (3) spectral methods for lower complexity in potential
computation.

However, the electrostatic-based analytical placers are lim-
ited by their “global” nature of their iterations [5, 6], which
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Fig. 1: Evolution of HPWL and λ over global placement itera-
tions in superblue19 benchmark. The density penalty dominate
optimization due to exponential growing λ to spread the few
clusters. Such behavior empirically degradate the optimization
results with wirelength overhead induced.

may fail to capture the fine-grained spatial and temporal
dynamics of the placement process. Recently, researchers
have developed various dynamic processes to improve the
performance of placer [7–10]. Since further improvement on
HPWL is challenging, many dynamic methods for global
placement are designed to enhance algorithm robustness or
guide timing and routability. The dynamic adaptive scheme
can continue following placement status and promptly adjust
the optimization result we expect, which is suitable for guiding
the fine-grained placement process.

We observe that some designs have close-knit nets which
cause cell clusters during placement flow, with the result that
the global density penalty multiplier cannot smoothly reach
the overflow target in such extreme cases. Figure 1 shows
the evolution of HPWL and density penalty multiplier λ
throughout the global placement procedure. While the density
constraints can be satisfied by gradually increasing lambda,
the placer always use a huge density penalty to wait for
these clusters reaching the overflow target, resulting in an
unnecessary wirelength increase in other nets. This situation
leads other cells, which have already reached the overflow
target be subject to a higher density penalty, thereby affecting
the final placement quality. RePlAce [3] sets local density
function at per-bin granularity to spreading cells at a fine-
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grained level, but it cannot explain and solve the root cause of
the cell spreading being not smooth. Observing the shortfall
in local smoothing, we develop a novel algorithm to dynami-
cally detect and adjust imbalanced cell distribution, ultimately
improving global placement quality.

In this paper, we propose a global placement algorithm with
preconditioning adaptation, and optimize the local smoothness
problem in the gloabl placement flow with net weighting. The
major contributions are summarized as follows.

• We design a cell cluster detector using the spectral
methods, which can accurately identify clusters affecting
normal placement behavior.

• We propose a divergence-guided smoothing method for
the density function, enabling locally adaptive adjustment
of clusters.

• We propose a dynamic net weighting scheme to address
the imbalance density map. By incorporating the wire-
length and density information of every cluster into the
backward propagation process, we refined and optimized
the placement of cluster cells.

• Experimental results on the DAC-2012 benchmarks suite
[11] show that on average we achieve HPWL and iteration
improvements compared to the state-of-the-art placer
after legalization and detailed placement.

The rest of the paper is organized as follows. Section II
provides some preliminaries including objective of placement
and Poisson’s equation. Section III presents the overall flow of
our proposed algorithm and the detailed explanations. Section
IV demonstrates the experimental results and some related
analysis, followed by Section V summarizing the whole paper.

II. PRELIMINARIES

A. Problem Statement

For wirelength-driven placement problem, we minimize the
wirelength with density constraints. By using the penalty factor
λ, we can produce an unconstrained optimization problem as
equation (1) shows

min
v

f(v) =W (v) + λD(v), (1)

where the wirelength objective W (v) takes every net instance
and returns the wirelength modeled by weighted-average
wirelength (WA) [12, 13], while the density penalty D(v)
addresses instance overlap. During nonlinear optimization, a
density penalty multiplier λ is gradually increased to reduce
overlap [2, 14–16], and the density constraints can be satisfied
by suitable λ to reach target overflow.

B. Poisson’s Equation in ePlace

The core idea of ePlace is using the electrostatic analogy to
transform a complex density penalty function into a solvable
Poisson’s equation problem [2, 17, 18]. In ePlace, the DCT
and DST are used in spectral methods to generate the solution
to the partial differential equations, where density penalty
and gradient are modeled as system potential energy and
electric force. Poisson’s equation has been used to compute the

potential field induced by a given charge density distribution.
Based on Gauss’s law, a partial differential equation with
Poisson’s equation, boundary condition, and the compatibility
condition in ePlace is used:


∇ · ∇ψ(x, y) = −ρ(x, y), (2a)
n̂ · ∇ψ(x, y) = 0, (x, y) ∈ ∂R, (2b)∫∫

R

ρ(x, y) dx dy =

∫∫
R

ψ(x, y) dx dy = 0. (2c)

Equation (2a) represents the Poisson equation, relating the
Laplacian of the potential ψ(x, y) to the density function
ρ(x, y). Equation (2b) is the Neumann boundary condition to
prevent a block from running out of the boundary, where n̂ is
the outward unit normal vector on the boundary ∂R. Equation
(2c) is the compatibility condition, which makes the system
of equations a unique solution.

Let u and p denote integral indexes, and the frequency
components are defined as ωu = 2πu/m and ωv = 2πv/m,
respectively. The coefficient of each wave function of a dis-
crete cosine transform is denoted by au,v as follows:

au,v =
1

m2

m−1∑
x=0

m−1∑
y=0

ρ(x, y) cos(ωux) cos(ωvy). (3)

Then take the Fourier transform of Equation(2a) to get the
Fourier series relationship, the potential value is easily calcu-
lated by

ψDCT (x, y) =

m−1∑
u=0

m−1∑
v=0

au,v
ω2
u + ω2

v

cos(ωux) cos(ωvy), (4)

where ψ(x, y) is the electric potential at the center of bin blj .
Based on the solution to the potential function in Equation(4),
we can obtain the solution to the electric field ξ(x, y) as
follows:


ξXDCT

=

m−1∑
u=0

m−1∑
v=0

au,vωu

ω2
u + ω2

v

sin(ωux) cos(ωvy)

ξYDCT
=

m−1∑
u=0

m−1∑
v=0

au,vωv

ω2
u + ω2

v

cos(ωux) sin(ωvy).

(5)

The electric potential and field distribution can be rapidly
determined by solving Poisson’s equation using spectral meth-
ods.

III. PROPOSED ALGORITHM

Figure 2 shows the overview of our placement algorithm.
Compared with other classic placer, our placement algorithm
introduces an adaptive preconditioning step after a suitable
iteration to further improve the quality of placement solutions.
Cell cluster detector obtains the net and node sets for dynamic
density smoothing and net weighting to dispersed cluster close
to the behavior of normal cells.
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Fig. 2: Our placement algorithm flow.
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Fig. 3: Cell distribution at the 550 iteration of the superblue19
benchmark. The unsuited density force pushes the cells away
from clusters, caused under-filled whitespace around cluster
and density overhead.

A. Divergence Analysis for Preconditioning

Close-knit nets are clustered together due to the entangle-
ment between wirelength and density. Such premature over-
optimization in their objectives often leads to accelerated local
convergence in the early stages of global placement, which
may caused the inefficiency of placer in the later stage for
solving local density overhead. Figure 3 shows clustering
phenomenon in the later stage of placement.

1) Cell Cluster Detector: Since the divergence of an elec-
tric field is a measure of how much the electric field spreads
out from a point, the tendency of cells to cluster in each
iteration can be expressed by divergence. By dividing the
placement region into m × m bins, we obtain an m × m

density matrix ρ, where each element represents the total area
occupied by the blocks within the corresponding bin. Then,
the divergence is calculated by

∇ · ξ = ∂ξx
∂x

+
∂ξy
∂y

. (6)

Based on the solution to the electric field function, we can
obtain the solution to divergence in the form of DCT and
DST in the horizontal and vertical directions respectively as
follows:


∂ξx
∂x =

m−1∑
u=0

m−1∑
v=0

au,vωu
2

ω2
u + ω2

v

sin(ωux) cos(ωvy)

∂ξy
∂y =

m−1∑
u=0

m−1∑
v=0

au,vωv
2

ω2
u + ω2

v

cos(ωux) sin(ωvy).

(7)

At the stage of solving equation (2a)-(2c), we use discrete
spectral transformation leveraging fast Fourier transform en-
gine in DREAMPlace [4]. After solving the Poisson equation,
we can also get the divergence of current iteration by Equation
(6) and Equation (7). The detector we designed identifies the
bin reaching the divergence threshold as a cluster and extracts
the associated net and node sets in it.

2) Diffusion-based Smooth Density Function: These clus-
ters found by our divergence detector can be considered as a
sink in the electrostatic field. From a physical perspective, the
initial placement diffuses from a source point, and extreme
close-knit nets form sinks in the placement flow. We aim to
eliminate all sinks in the density field so that the diffusion flux
reaches dynamic equilibrium in the calculation domain. When
the gradient curl of the density field disappears, forming a field
without sink and source, marking the dynamic equilibrium
state of the diffusion process.

ρ̂(x, y) = ρ(x, y) + div (8)

Specifically, if the divergence of density field div > 0, it
indicates that the point is in the local concentration minimum
region, and a concentration increment is introduced to promote
regional smoothing; if div < 0, it indicates that the point is
in the local concentration maximum region, and concentration
attenuation is applied to eliminate gradient mutations.

In the electrostatic-based analytical placement, what guides
cells to spread is not cell density, but electric field force.
Hence, we use the electric field divergence get by Equation
(6) to guide the correction of the density map at the cluster.
The modified diffusion equation is

ρ̂(x, y) = ρ(x, y) +K × (∇ · ξ), (9)

where K is the diffusion coefficient, its value depends on the
degree of cluster in a design. After obtaining the new density
function, we apply it to compute the electric potential and field
again.
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TABLE I: The HPWL and iteration comparison on the DAC-2012 benchmarks suite.

Circuits # Movable # Nets DREAMPlace-1 * DREAMPlace-2 * Ours
Cells HPWL iteration HPWL iteration HPWL iteration

SUPERBLUE2 921273 990899 5.669E+08 694 5.667E+08 811 5.667E+08 802
SUPERBLUE3 833370 898001 2.880E+08 710 2.874E+08 825 2.865E+08 825
SUPERBLUE6 919093 1006629 3.036E+08 720 3.036E+08 743 3.035E+08 755
SUPERBLUE7 1271887 1340418 3.634E+08 757 3.637E+08 774 3.634E+08 763
SUPERBLUE9 789064 833808 2.086E+08 744 2.098E+08 889 2.069E+08 869
SUPERBLUE11 859771 935731 3.211E+08 710 3.193E+08 827 3.197E+08 843
SUPERBLUE12 1278084 1293436 2.235E+08 953 2.259E+08 1093 2.218E+08 1066
SUPERBLUE14 567840 619815 2.105E+08 646 2.101E+08 702 2.091E+08 704
SUPERBLUE16 680450 697458 2.416E+08 685 2.411E+08 798 2.403E+08 784
SUPERBLUE19 506097 511685 1.363E+08 605 1.360E+08 703 1.348E+08 723

ratio 1.005 0.889 1.005 1.003 1.000 1.000

DREAMPlace-1: released DREAMPlace
DREAMPlace-2: smaller-step-size DREAMPlace with similar iteration to ours

(a) iteration=500 (b) iteration=515

Fig. 4: Detected clusters during our global placement for the superblue19 benchmark. Standard cells, macros and clusters are
denoted by blue, pink and green, respectively.

Algorithm 1 Update Net Weights
Require: cluster net set : CNets, cluster node set : CNodes

1: N ← AllNodes− CNodes; ▷ Get normal node set
2:

Ns ← compute_scale (

∑
N
∇W∑

N
∇D );

3: for each cluster in CNets do
4: C ← CNodes[cluster];
5:

Cs ← compute_scale (

∑
C
∇W∑

C
∇D );

6: s ← Cs / Ns; ▷ Compute scaling factor
7: wcluster ← wcluster × s; ▷ Update the net weights
8: end for

B. Net Weighting Scheme

The local density of the cluster cells exceed that of the
normal cells, thus the global placement flow have to wait for
them until the layout reaching the target overflow in the later
stage with the density penalty multiplier λ increasing. For
normal cells (divergence is less than threshold we set), their
wirelength and density gradient norm in backward propagation
represent their optimization degree. The local density of cluster
cells is larger than normal cells, so their optimization degree
of wirelength should be stronger to ensure that they do not
continue being cluster.

Net-based approaches always used to optimize timing in
placement [19–23], we apply it to adjust the cluster spreading
based on the same principle of ignoring critical paths. The
standard wirelength-density scale depends on normal cells,
which ensures the net weight of cells in clusters is adjusted
in proportion to the wirelength and density scaling factor. For
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each cluster, the wirelength-density scale is normalized by the
standard scale. This step ensures that the placement of cells in
cluster is adjusted in proportion to the wirelength and density
scaling factors.

To efficiently help clusters spreading smoothly, we propose
an improved dynamic net weight adaptation strategy that
dynamically adjusts the net weight of every cluster and the
scaling factor with respect to the wirelength and density
gradient norm per cycle iteration. The net and node sets
returned by the cell cluster detector is the target object we
need to adjust. Algorithm 1 illustrates detailed implementation
steps.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We build our global placement algorithm on an open-source
VLSI placer DREAMPlace [4]. All the experiments run on a
Linux server with 2.10GHz Intel Xeon Gold 6230 CPU using 8
threads and use the datatype of single-precision floating-point
for evaluation.

B. HPWL and Iteration Improvement

We conduct experiments on the DAC-2012 benchmarks
suite [11]. Local cluster adjustment may slow down the con-
vergence speed, and have impact on the behavior of the global
placement. To ensure a fair comparison, we specially slow
down the optimization process of DREAMPlcae by reducing
the step size [5, 24] to compare with ours so that the total
iterations of the two remain close.

Cell positions are highly overlapped at the earlier stages, and
conducted divergence detector in this situation will consume
a lot of runtime and will not have a significant direct benefit
on the final placement quality. Thus detector is typically
conducted once the cells are approximately distributed by
density forces. In our experiments, we assess detector and
adjust net weights every 5 iterations, starting after about half
of the total iterations of the baseline.

Table I gives the crucial benchmark statistics and compares
the placement quality of our algorithm with released DREAM-
Place (DREAMPlace-1), smaller-step-size DREAMPlace with
similar iteration to ours (DREAMPlace-2). The results show
a detailed comparison that includes the HPWL wirelength of
the final placement (HPWL) and the total number of iterations
(iteration) for each placer. We use boldface to emphasize the
best HPWL among the three results, and the bottom row gives
the normalized wirelength and iteration ratios based on our
results.

The results demonstrate that our algorithm outperforms
DREAMPlace by achieving a 0.5% improvement in average
final placement HPWL. Moreover, compared with smaller-
step-size DREAMPlace, our algorithm achieves a 0.5% im-
provement in HPWL while reducing the number of iterations
by 0.3%. It is clear that our analytical method is the most
accurate, and our adaptive preconditioning algorithm can make
the best tradeoff between HPWL and iteration.

C. Cluster Detection and Smooth

Figure 4a illustrates detected clusters on superblue19 bench-
mark at iteration 500 in normal flow. Standard cells, macros,
and detected clusters are marked in blue, pink, and green,
respectively. After adjusted twice, the result at the 515th
iteration is shown in Figure 4b. By observing the six dom-
inant clusters, we can find that the clustering phenomenon
is effectively solved after two dynamic net weighting steps.
The experimental results show that our method can effectively
detect clusters and locally smooth them.

V. CONCLUSION

In this paper, we propose a adaptive preconditioning al-
gorithm for global placement guided by divergence analysis.
The distribution of the clusters snapshot result shows that
our algorithm can effectively capture the spatial correlation
of instances in the global placement stage. Experimental
results show that ours can produce better placement solutions
achieving 0.5% HPWL improvement on average compared to
the most widely-used analytical placer. This work provides
new ideas and methodological support for solving placement
challenges in complex integrated circuit design.
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